29 research outputs found

    Visible Light Positioning and Navigation Using Noise Measurement and Mitigation

    Get PDF
    Visible Light Positioning (VLP) has become an essential candidate for high-accurate positioning; however, its positioning accuracy is usually degraded by the noise in the VLP system. To solve this problem, a novel scheme of noise measurement and mitigation is proposed for VLPbased on the noise measurement from Allan Varianceand the noise mitigation from positioning algorithms such asAdaptive Least Squares (ALSQ)andExtended Kalman Filter (EKF). In this scheme, Allan Varianceis introduced for noise analysis in VLPfor the first time, which provides an efficient method for measuring the white noise in the VLPsystems. Meanwhile, we evaluate our noise reduction method under static testusing ALSQ and dynamic test using EKF. Furthermore, this article carefully discusses the relationship between positioning accuracy and Dilution of Precision (DOP) values. The preliminary field static tests demonstrate that the proposed scheme improves thepositioning accuracy by 16.5% and achieves the accuracy of 137mmwhile dynamic tests show an improvement of 60.4% and achieve the mean positioning accuracyof 153 mm

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    High-Accuracy Positioning in GNSS-Blocked Areas by Using the MSCKF-Based SF-RTK/IMU/Camera Tight Integration

    No full text
    The integration of global navigation satellite system (GNSS) single-frequency (SF) real-time kinematics (RTKs) and inertial navigation system (INS) has the advantages of low-cost and low-power consumption compared to the multiple-frequency GNSS RTK/INS integration system. However, due to the vulnerability of GNSS signal reception, the application of the GNSS SF-RTK/INS integration is limited in complex environments. To improve the positioning accuracy of SF-RTK/INS integration in GNSS-blocked environments, we present a low-cost tight integration system based on BDS/GPS SF-RTK, a low-cost inertial measurement unit (IMU), and a monocular camera. In such a system, a multi-state constraint Kalman filter (MSCKF) is adopted to integrate the single-frequency pseudo-range, phase-carrier, inertial measurements, and visual data tightly. A wheel robot dataset collected under satellite signal-blocked conditions is used to evaluate its performance in terms of position, attitude, and run time, respectively. Results illustrated that the presented model can provide higher position accuracy compared to those provided by the RTK/INS tight integration system and visual-inertial tight integration system. Moreover, the average running time presents the potential of the presented method in real-time applications

    Evaluation on Nonholonomic Constraints and Rauch–Tung–Striebel Filter-Enhanced UWB/INS Integration

    No full text
    Precise and seamless positioning is becoming a basic requirement for the Internet of Things (IoT). However, there is a gap for precise positioning in Global Navigation Satellite System- (GNSS-) denied indoor areas. Thus, a multisensor integration system based on ultrawide-band (UWB), inertial navigation system (INS), nonholonomic constraints (NHCs), and Rauch–Tung–Striebel (RTS) smoother is proposed. In this system, the UWB performs as the major precise positioning system, while the INS bridges the UWB-degraded and UWB-denied periods. Meanwhile, the NHC restrains the drifts of INS, while the RTS smoother further upgrades the navigation accuracy. The contributions of this article are as follows. First, it presents the robust least square- (RLS-) based UWB positioning. The proposed method is effective in mitigating the impact of the effect of non-line-of-sight (NLOS), which is one of the most significant error sources for UWB positioning. Second, it derives the mathematical model of the UWB/INS/NHC/RTS integration, which is new compared to the existing approaches. Results illustrate that the proposed system can provide centimeter-level positioning accuracy, millimeter-level velocimetry accuracy, and accuracy of better than 0.05 and 0.15 degrees for horizontal and vertical attitude angles, respectively. Even in the scenario with short-term UWB outages (30 s), simulation results show that the three-dimensional position still can be better than 20 cm. Such accuracy values reach the state-of-the-art for indoor positioning using UWB and INS.Peer Reviewe

    Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance

    No full text
    Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available

    Investigation of Displacement and Ionospheric Disturbance during an Earthquake Using Single-Frequency PPP

    No full text
    Currently, it is still challenging to detect earthquakes by using the measurements of Global Navigation Satellite System (GNSS), especially while only adopting single-frequency GNSS. To increase the accuracy of earthquake detection and warning, extra information and techniques are required that lead to high costs. Therefore, this work tries to find a low-cost method with high-accuracy performance. The contributions of our research are twofold: (1) an improved earthquake-displacement estimation approach by considering the relation between earthquake and ionospheric disturbance is presented. For this purpose, we propose an undifferenced uncombined Single-Frequency Precise Point Positioning (SF-PPP) approach, in which both the ionospheric delay of each observed satellite and receiver Differential Code Bias (DCB) are parameterized. When processing the 1 Hz GPS data collected during the 2013 Mw7.0 Lushan earthquake and the 2011 Mw9.0 Tohoku-Oki earthquake, the proposed SF-PPP method can provide coseismic deformation signals accurately. Compared to the results from GAMIT/TRACK, the accuracy of the proposed SF-PPP was not influenced by the common mode errors that exist in the GAMIT/TRACK solutions. (2) Vertical Total Electron Content (VTEC) anomalies before an earthquake are investigated by applying time-series analysis and spatial interpolation methods. Furthermore, on the long-term scale, it is revealed that significant positive/negative VTEC anomalies appeared around the earthquake epicenter on the day the earthquake occurred compared to about 4–5 days before the earthquake, whereas, on the short-term scale, positive/negative VTEC anomalies emerged several-hours before or after an earthquake

    High-Accuracy Positioning in Urban Environments Using Single-Frequency Multi-GNSS RTK/MEMS-IMU Integration

    No full text
    The integration of Global Positioning System (GPS) real-time kinematics (RTK) and an inertial navigation system (INS) has been widely used in many applications, such as mobile mapping and autonomous vehicle control. Such applications require high-accuracy position information. However, continuous and reliable high-accuracy positioning is still challenging for GPS/INS integration in urban environments because of the limited satellite visibility, increasing multipath, and frequent signal blockages. Recently, with the rapid deployment of multi-constellation Global Navigation Satellite System (multi-GNSS) and the great advances in low-cost micro-electro-mechanical-system (MEMS) inertial measurement units (IMUs), it is expected that the positioning performance could be improved significantly. In this contribution, the tightly-coupled single-frequency multi-GNSS RTK/MEMS-IMU integration is developed to provide precise and continuous positioning solutions in urban environments. The innovation-based outlier-resistant ambiguity resolution (AR) and Kalman filtering strategy are proposed specifically for the integrated system to resist the measurement outliers or poor-quality observations. A field vehicular experiment was conducted in Wuhan City to evaluate the performance of the proposed algorithm. Results indicate that it is feasible for the proposed algorithm to obtain high-accuracy positioning solutions in the presence of measurement outliers. Moreover, the tightly-coupled single-frequency multi-GNSS RTK/MEMS-IMU integration even outperforms the dual-frequency multi-GNSS RTK in terms of AR and positioning performance for short baselines in urban environments
    corecore